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ABSTRACT 

A theoretical real-gas analysis of the expansion tunnel is presented. 
A digital computer program,   developed for this investigation,  is 
discussed,   and Fortran listings and flow charts are included.    Tunnel 
performance,  test gas slug length,  and "working" parameters are given 
for several expansion area ratios.    Driver temperature and energy re- 
quirements are given for specific cases. 
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p. Arc driver gas pressure prior to arc discharge 
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R Gas constant 

S Entropy 

T Temperature 

T; Arc driver gas temperature prior to arc discharge 
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AE Driver power supply stored energy 

At Ideal run time 
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SECTION  I 
INTRODUCTION 

An aerodynamic test device utilizing an unsteady expansion to 
accelerate shock heated gas was first proposed by Resler and Bloxsom 
(Ref.   1) and was treated briefly by Hertzberg et al.  (Ref.  2).    Trimpi 
(Ref.   3) made a detailed theoretical study of the expansion tube,   a 
device in which the entire expansion from the shock heated condition to 
the test condition is performed unsteadily.    In both Refs.  2 and 3 it was 
suggested that an area change could be added downstream of the unsteady 
expansion so that part of the expansion would be performed steadily. 
Trimpi and Callis (Ref.  4) later did a perfect gas analysis of such a de- 
vice,   which is called an expansion tunnel.    The basic wave diagrams for 
both the expansion tube and tunnel are shown in Fig.   1. 

For a given density level the test gas velocity obtainable with an 
expansion tube is approximately twice that obtained by a shock tunnel 
with the same driver (Ref.  3),  as shown in Fig.  2.    In spite of this 
considerable performance gain,  little effort has been made to develop 
an operable expansion tube.    To a large degree this hesitancy comes 
from the expected problems associated with the device. 

One of the more questionable aspects of the expansion tube is the 
uniformity of the test gas.    Some insight into the problem can be gained 
from Fig.   3,   which gives the ratio of the test gas slug length after shock 
heating to the tube diameter.    This figure shows that the test gas is in 
close proximity to the secondary diaphragm at the time of rupture. 
Although the secondary diaphragm can be very thin,  it does require a 
finite time to rupture.    There is,  then,  a shock wave reflected from the 
diaphragm which very quickly weakens to the vanishing point.    Since the 
diaphragm will be bulged,   this reflection will not be planar.    At least 
the initial portion,  and possibly all,   of the test gas passes through this 
shock wave which is not uniform in either space or time. 

For the perfect gas case the addition of the steady expansion,   as in 
the expansion tunnel,   is very effective in alleviating the test gas slug 
length problem. *   The steady expansion is detrimental,  however,   in 
terms of test gas velocity obtainable with a given driver. 2   The optimum 
expansion tunnel design will probably require some compromise between 
maximum test gas slug length and maximum velocity. 

^ee Fig.   22 of Ref.  4. 
2See Fig.  5 of Ref.  4. 
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The investigation reported herein was undertaken in order to deter- 
mine significant expansion tunnel performance parameters based upon 
a real air^ test gas and to generate the proper working charts for 
future expansion tunnel design and operation (Appendix I). 

SECTION  II 
CALCULATIONS 

2.1   EXPANSION TUNNEL CALCULATIONS 

This investigation is concerned with the theoretical possibilities of 
an expansion tunnel as a high velocity flight duplication4 device.   It is 
meaningful, then, to determine the significant parameters such as shock 
strengths, pressures, and tube lengths in terms of duplication altitude 
and flight velocity.   The bulk of these computations was done with a 
digital computer program which is briefly described below.   A detailed 
description including the Fortran listing and flow diagram is given in 
Appendixes II and III.   The test gas slug length, &t,  and accelerating 
tube charge pressure were calculated by hand as described in Sec- 
tions 2. 1. 2 and 2. 1.3, respectively. 

2.1.1   Tho Expansion Turn»! Program 

The expansion tunnel program is designed to determine flow param- 
eters and tube lengths of interest for given altitude, velocity, and 
expansion area ratio,    The input and output data for this program are 
shown in Table I.   The expansion tunnel portion of Fig.  1 showB the 
various flow regions. 

The general procedure is as outlined below. 

1, For a given flight altitude, free-stream pressure and tempera- 
ture are obtained by table look-up using the data of Ref. 5. 
Enthalpy, hQ^( and entropy, SgA,  are calculated using the 
perfect gas equations; 

*>«A   ■   CpT«A 

S,A   -  Sr  -  Cp    h   riiifyli 

AM y 

3Thermodynamic and chemical equilibrium was assumed for all 
calculations included herein. 

^Duplication herein refers to the complete matching of ambient 
properties and ambient chemistry together with the required flow velocity. 
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('    The perfect-gas equations are valid for altitudes of interest. 

2. The continuity and energy equations for the steady isentropic 
expansion from 6 to 6A are combined,  yielding 

P<sA6(2ho6A *- 2h6)/s = P6AU6AA6A 

This equation and the equation of state,   represented by the 
Table of Thermodynamic Properties (Refs.   6 and 7) are solved 
(for S constant) simultaneously for pg and hg. 

3. The unsteady expansion from 2 to 6 and the shock crossing 1 
to 2 must be performed simultaneously since the limit of the 
expansion is determined by the shock crossing. 

For the unsteady isentropic expansion, 

b. 

«. -».--/  (*). 

■' ■' From the tables of thermodynamic properties (Refs.  5 and 6) 
through the unsteady expansion: 

a   =  f, (h,S) 

at 2: 
P2    =   f2 (llj , S2 ) 

P2  = h (h2,S2) 

..   Across the shock,   Mo   : 

P2 + H (USj - Uz)    = Pi + p\ Usx (momentum equation) 

h2 + 1/2 (Us,  - U2)2 =   hi  +  1/2 USl
2    (energy equation) 

Pi  (Us,  - U2) = Pi  Ug, (continuity equation) 

For the gas in region 1; 
Pi  ■ Pi  Ri Tj (ideal gas equation of state) 

The charge gas temperature,  T1,5 and enthalpy,  hi,   are inputs 
to the program.    The above equations are solved for the required flow 
parameters in regions 1 and 2,   assuming the unsteady expansion to be 
isentropic. 

For the calculations reported herein,   Tj = 296°K. 
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The accelerating tube length is calculated from 

iB/Atr  = U6  (M6  - 1) 

The tube length ratio &\t£a is optimum6 when the (U + a) wave 

reflected from the 2-3 interface overtakes the tail of the expansion 
at the test section as shown in Fig.   1.    The time required for the 
passage of this reflected wave,   Atw/^g,   is calculated by integration 
through the unsteady expansion.    The technique used to determine ^\I£Q 

is described in Appendices II and III and is similar to that of Ref.   8. 

The theoretical model of this program was based upon the follow- 
ing simplifying assumptions: 

1. Air in regions 1 and 6A is assumed to be ideal. 

2. Air in regions 2 and 6 is assumed to be in thermodynamic 
equilibrium. 

3. Flow is inviscid and one dimensional throughout. 

4. Diaphragm rupture is instantaneous with no losses. 

5. The expansion nozzle has no length and therefore zero 
"start" time. 

2.1.2 Test Gas Slug Length 

The test gas slug length,  $..,  was calculated from the appropriate 
form of the continuity equation, 

p2 ii A2    =   P6.\ UfiA  Atr  A6A 

2.1.3 Accelerating Tube Charge Pressure 

The accelerating tube charge pressure,   p«,  was determined for a 
given a« using Ufi and pg from: 

Pe  =  P7 (pt/p?) =  Pe (ps/p?) 

and i ■   .     *       v Ps  = P7 (across interface) 

The ratio of Pg/p7 was obtained from Ref.  9 for a given 

Ue/ag - Ur/ag (across interface). 

i.e. ,   minimum ij for maximum run time with a given JPQ. 
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2.2  DRIVER CALCULATIONS 

The loss in performance associated with the steady expansion can, 
within limits,   be offset by using a higher performance driver.    While 
driver design,   per se,   is not within the scope of this investigation,   a 
knowledge of driver requirements becomes important in assessing the 
significance of the performance loss. 

Of particular interest are driver pressure,  temperature,   and 
energy requirements.    Driver pressure and temperature were calculated 
using an existing shock tube program,  but driver energy (and driver 
optimization based upon energy requirements) was determined by hand 
calculations. 

2.2.1   The Shock Tube Program 

The shock tube program used in this study determines flow conditions 
for given charge conditions in a two- or three-stage shock tube.    The 
program was used to determine driver charge conditions for a given Mo. 
and p^.    This solution is obtained in the usual manner of expanding the 
driver gas to match pressure and velocity at the 2-3 interface.    The 
biiock crossing is performed much as is done in the expansion tunnel 
program except that the thermodynamic properties are obtained by an 
empirical surface fit (Ref.   10) to the data of Ref.   11.    The basic thermo- 
dynamic data used in the two machine programs differ in that the data for 
the expansion tunnel program include intermolecular force effects where- 
as the data for the shock tube program do not.    The shock tube program 
was used only to determine shock strength,   Mg  ,   for given driver and driven 

tube conditions.    Experience has shown that values of Mo, calculated with 
°1 

either s-et of data are in good agreement.    The inconsistency in thermody- 
namic properties applies only to calculations involving the driver,  and 
there its effects are felt to be insignificant. 

This program will accept driver/driven area ratios of any value; 
however,  for A^j < 1 and low values of p41,  upstream-facing secondary 
shocks are possible.    If such a shock is standing in the area change,   as 
opposed to moving downstream,  the program will not give a solution. 
In such cases the solution was obtained by hand calculations. 

Program calculations are based upon the following simplifying 
assumptions: 

1.  Gases are assumed to be perfect except for the shock heated 
region 2 which is taken as real air in thermodynamic equilibrium. 
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»   • 

2. Flow is inviscid and one dimensional throughout. 

3. Diaphragm rupture is instantaneous with no losses. 

2-2-2   Driver Energy and Optimization 

Driver energy,   which becomes highly significant in the case of arc 
heating since its magnitude is reflected directly in the cost of a power 
supply,  was calculated assuming: 

1. Helium as the driver gas (perfect gas assumed). 

2. The power supply is of the fast discharge type,  with a discharge 
time of the order of 100 usec,    Arc efficiency data (Fig.   4) were 
obtained from Refs.   12 and 13 and are applicable to a fast 
discharge system. 

Driver energy per unit volume for a constant volume energy addition 
process is given by 

AE 1 p4      T4 -Tj i 
A4 i4 y4 - 1     t) T4 U. • 

Multiplying by the tube length and area ratios yields the energy param- 
eter,   e, 

AE 
l6A Air y4 

1 P4_    T4-Tj   / A6  \ /iiWM/M / H \ 
,-i    v Ti      \A6AJ\AJ\IJ{IJ \^J 

where p4  and T4 were given by the shock tube program 
0 

—4- was calculated by hand using local values of velocity and 
1    acoustic velocity from the shock tube program 

i S-   and -i1- were given by the expansion tunnel program 
Air       " ia 

■q        was taken from Fig.   4 

Ti      was assumed to be 296°K 

and     A6 = Ai 

There are an infinite number of combinations of T4, p4,  and A^ 
which will yield identical theoretical driver performance.    In order 
to give meaning to energy requirements,  it is necessary to choose the 
combination of these variables which will yield the given performance 
while using minimum energy,   i. e. ,   the driver must be optimized.    In 
order to optimize the driver,   a power factor is defined as: 

€ = 
AB      _       AE        A4    J4 

AI^I A 4 ■£ 4      Aj     11 
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The driver is optimized when,  for a given Mg  ,  pj,  and Tj,  the value 

of f (driver energy per driven tube unit volume) is minimum.    The 
actual optimization process consisted of choosing values of T4 and A^j, 
calculating p4>  and then varying T4 and A41 until a minimum was 
reached in £. 

SECTION   III 
RESULTS7 

3.1 PERFORMANCE 

Performance calculations in terms of velocity and altitude were 
made for expansion area ratios of 1,   10,   100,   and 1000.    Required 
shock strength,   Mg ,  charge pressure,  p^  and compressibility factor, 

Z2.   are presented in Fig.   5.    The parameters Mg    and pj were chosen 

because of their wide acceptance as independent variables in shock tube 
work (particularly in shock-crossing calculations).    Their values give 
a general indication of driver requirements.    The value of Zg is an 
indication of the level of dissociation and ionization in the shock heated 
gas in region 2,    Bray (Ref.   14) has shown that for the case of a steady 
expansion in which the flow upstream of the expansion is not frozen,  the 
mole fraction of frozen constituents after the expansion is a very weak 
function of the ionization-dissociation level prior to the expansion. 
If the same phenomenon occurs in an unsteady expansion,  then the value 
of Z2 is not necessarily indicative of the ionization-dissociation level in 
the expanded test gas.    Until an analysis of recombination through an 
unsteady expansion is available,  no meaningful comparison of test gas 
ionization-dissociation level for different expansion area ratios can be 
made. 

3.2 DRIVER REQUIREMENTS 

In order to investigate driver requirements in more detail,  driver 
temperature,  T4.,  was calculated for a constant area driver using 
helium at a pressure,  P4,   of 5000 atm.    The results are shown in Fig. 6. 
The drivers considered here represent rather severe requirements,  but 
their design is believed to be within the present "state of the art1'.    The 
high temperature helium drivers would probably be arc heated,   although 
the densities are somewhat higher than normal for arc drivers. 

'Additional results,   in the form of working graphs for tunnel design 
and operation,   are presented in Appendix I. 

o 
Applies specifically to frozen atomic oxygen. 
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The driver energy optimization was done for a helium driver for 
the specific case of Msi =  10,   Pi =  10,   and Tl = 296°K.   The variation 
of the power factor,   {,   with driver temperature and area ratio is 
shown in Fig.   7.    For a maximum driver pressure of 5000 atm,  the 
optimum occurs at a temperature,   T4>   of about 5000°K and an area 
ratio A41 ~ 1.    The driver energy parameter,   e,   is shown for the 
optimum driver in Fig.   6.    Note that these energies are for constant 
shock strength and charge pressure,   pj_,  and not constant performance. 
Although they cannot be used to compare energy requirements as a 
function of expansion area ratio,  they do give single point energy re- 
quirements for an optimum driver and,   therefore,   some insight into 
power supply requirements. 

In order to compare energy requirements for various expansion 
ratios,   it is necessary to optimize the driver at the same performance 
level for each expansion area ratio.    This gives a different value of 
M51 and p-. for each value of Ag»/Ag.    In order to simplify the optimiza- 

tion it is assumed that the optimum area ratio,  A.. .      .,  is equal to one. 

This assumption is reasonable for shock strengths,   Mg ,  near 10 and 

pressures,  p^,  near 10 atm since the constant temperature curves of 
Jig.   7 are very flat in the region near A41 = 1. 

Optimum driver temperature and pressure were calculated for the 
performance level of Ug» = 30, 000 ft/sec and altitude = 150, 000 ft 
(9. 3 < Mg < 12. 6,   1. 2 < Pj < 10. 4 atm).    Energy required for the optimum 
case is shown as a function of the expansion area ratio in Fig.   8.    The 
inclusion of driver area ratio in the optimization would produce second- 
order changes in the curve;  however,   it is doubtful that this would be 
significant in view of the large variation of energy with expansion tunnel 
area ratio. 

One point concerning the inviscid flow assumption seems worthy of 
mention here.    There are two viscous effects which can greatly affect the 
driver energy requirements: 

1. Shock attenuation (energy loss) 

2. Decreased run time (mass loss). 

In order to offset shock attenuation in both the driver and accelerating 
tubes,   a more energetic driver gas will have to be used.    In addition a 
longer driven tube,   and therefore a longer driver,   will be required to re- 
cover the run time lost by boundary-layer effects (see Refs.   15 and 16). 
In terms of driver energy requirements the two effects are additive,   and it 
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is likely that for high H/d tubes the inviscid calculation will significantly 
underpredict driver energy requirements. 

3.3 RUN TIME 

Run time per unit length of driven and accelerating tube is presented 
in Fig.   9.    Driver length is not included since it is not defined by alti- 
tude alone,  but depends upon the particular driver conditions chosen. 
Usually,   its length will be small compared to the combined length of the 
accelerating and driven tubes.    It should be emphasized that the run time 
presented here assumes an instantaneous nozzle start.    Although 
Atr/(i^ + ig) increases with increasing expansion ratios,  the effect of 
expansion area on the actual run time will depend to a large degree on 
the nozzle starting process.    No attempt was made in this study to 
determine nozzle start times;  however,  the "perfect start" perfect gas 
case is treated in Ref.  4. 

3.4 TEST GASSLUG LENGTH 

Figure 10 gives the length of the test gas slug at the time of 
secondary diaphragm rupture.    The parameter on the right,  i^/dj,   is 
the ratio of the test gas slug length to the diaphragm diameter for an 
accelerating tube length-to-diameter ratio of 200.    The maximum value 
of $■%!&%,  anc* therefore ^t^lj   *s determined by viscous effects and is 
unknown.    However,  from shock tube experience,   anig/dg of 200 is 
quite large.    Even for the large I/d and an expansion ratio of 1000,  the 
test gas slug length is only one-tenth of the diaphragm diameter for high 
velocities. 

SECTION   IV 
CONCLUDING REMARKS 

In order to better illustrate the effect of the steady expansion,   sum- 
mary plots {Figs.   11 and 12) were made for a specific case.    For com- 
parison purposes the perfect gas results of Ref.  4 are also shown in 
Fig.   12. 

Performance loss by the addition of the area change for an altitude 
of 150, 000 ft is illustrated in Fig.   11.    Since the performance lines are 
for a constant altitude,   and therefore a constant entropy,  it follows that, 
for a given Mg  ,  p-. is constant.    A given driver,  then,   would operate 

along a line of constant Mg,. 
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As shown in Fig.   11,  the loss in velocity for a given driver can be 
considerable;  however,   it becomes significant only when the driver is 
of limited potential.    Figure 12a illustrates temperature requirements 
for a specific performance (UCA  

= 30, 000 ft/sec at a duplicated alti- 
tude of 150, 000 ft) and a driver pressure of 5000 atm.    For this per- 
formance point the large expansion area ratios would entail severe 
driver temperature requirements for drivers which heat the gas by heat 
transfer from surrounding surfaces. 

Drivers which heat the gas directly,  such as electric arc heated 
drivers,  have temperature limits which are quite high and thus would 
not impose fundamental limitations for the performance shown here. 
Drivers operating in this mode are generally limited more by energy 
requirements since they add energy very rapidly and normally require 
an energy storage system which has a high relative cost.    For a given 
test section size and run time,   driver energy and,   therefore,   power 
supply costs decrease with increasing expansion area ratio (Fig,   12b). 

For a given accelerating tube length-to-diameter ratio,  ig/dg, 
large gains can be made in test slug length,  J^/d] (and hopefully flow 
uniformity),  by using large expansion area ratios (Fig.   12c}.    It 
should be noted that the parameter actually of interest is S.\!^\ t        \ 

which occurs at -fig/dg = ^g^d8(max)'   and *s dependent upon boundary- 
layer growth.    No attempt is made here to include boundary-layer 
effects;  however,   perfect gas calculations for a simplified model are 
included in Ref.  4. 

In summary,   an increasing expansion area ratio causes: 

1. A loss in performance if the driver is limited in temperature 
and pressure. 

2. A gain in performance if the driver is limited only in energy. 

3. An increase in the test gas slug length parameter,  £f/£g- 
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TABLE   I 
EXPANSION TUNNEL PROGRAM - INPUT AND OUTPUT DATA 

INPUT  DATA 

U. 6A Ft   (Altitude) A6A/A6 

OUTPUT DATA 

Pi 
us bl Sl V£8 Ü8/Atr 

P2 U2 T2 P2 h2 a2 Z2 

P6 
U6 T6 P6 h6 a6 Z6 

P6A U6A T6A P6A h6A a6A Z6A 
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APPENDIX   I 
WORKING GRAPHS 

As an aid in expansion tunnel design and operation,   some of the 
more meaningful parameters are presented in the form of working 
graphs.    Charge pressures p« and pn are presented in Figs.   1-1 and 
1-2,   respectively.    Pressure in the shock heated region,  P2,   is pre- 
sented in Fig.   1-3.    The nondimensional form,   p/pgA,   reduces the 
variation with altitude to that caused by real-gas effects and acoustic 
velocity variation. 

Shock strengths as a function of altitude and test gas velocity are 
presented in Figs.  1-4 and 1-5.    Here again,  the variation with altitude 
is caused by variation of acoustic velocity, ag *>  and real-gas effects. 

The optimum driven tube length is given as a function of test gas 
velocity and altitude in Fig.  1-6.    As noted previously,  viscous effects 
in the driven tube may increase the optimum length considerably. 
Accelerating tube length per unit run time is shown in Fig.  1-7.    The 
effects of viscosity on run time have not been assessed,   even qualita- 
tively,  to date. 
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APPENDIX   II 
DERIVATION OF EQUATIONS USED IN THE COMPUTER PROGRAM 

SHOCK CROSSING EQUATIONS 

For a plane shock wave moving into a quiescent gas,  the equations 
for the conservation of mass,   momentum,  and energy,  and the equa- 
tion of state are,   respectively, 

P2(USl - U2) = Pl Us, (II-1) 

P2 
+ Pi (US! - U2)2 = Pj  + Pl USl

2 (u-2) 

h2 + 1/2 {USl  - L2)
2 = hj  + 1/2  US]

2 (II-3) 

P,  = Pl RTi (II-4) 

These four equations will be used to determine p,,  Uq , P\>  and U2. 

o 
Eliminating U2 and Ug      from Eqs.   (II-l), (II- 2),  and (II-3) gives9 

(p /p    - i) -HHM- .   (b2A,-D2h1 
21 Pi 1 + Pi/pt 

Now,  eliminating p^ between Eqs.  (II-4) and (II-5),  one gets,  after 
some manipulation, 

,2    r_2P2 (h2 ~ h,)     __ JP^T^ 
J^" °     (11-6) 

The positive sign in the quadratic formula corresponding to the 
above equation yields the desired value of p,.    Equations (II-3),   (II-4), 
and (II-1) can be written 

usj = |2(h2 - hx>/[i - (Pl/pj2]r (n-7) 

9 
Introducing the nondimensional quantities of p in atm and 

p in amagats. 
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Pi   = Pi Tl/Ta (II-8) 

U2 = US;  (l - PI/P2) (II-9) 

Use is made of Eqs.   (II-6),   (II-7),   (II-8),   and (II-9) in Appendix III. 

LENGTH EQUATIONS 

Equation (II-3),  also appearing in Appendix III,  will now be de- 
rived.    Reference to Fig.  II-1 will aid in the understanding of the 
following development.    Hence,   from Fig.   II-1 it follows that 

li/Aty  = a2 USl/(USl  - U,) 

iB/Atz = U6 - 

(11-10) 

(11-11) 

For the unsteady expansion between regions 2 and 6,  the following 
equations are valid: 

dt 1 
At U + a 

I- At* 1 
I U -a 

adU   = -dh 

(11-12) 

(11-13) 

(11-14) 

The parameter 6. can be eliminated between Eqs.   (11-12) and 
(11-13) by differentiating (Eq.  11-13) and putting the result into Eq.   (11-12). 

(U   - a)dt  +  (dtl  - da)(t  -  Atx)   =  (U  +  a) dt (11-15) 

Using Eq.   (11-14) to remove dU from Eq.  (11-15) and simplifying 
gives 

2dt +   _da_ 

t  - At, 

dh 
„2 

(II- 16) 

Integrating Eq.   (11-16) between regions 2 and 6 gives 

Hence, 

log a2 (t2 - Atx)
2 

-./ Jk. + log 
„2 B 

a6 (t6   - At*!2 

log m sum 

a„ 

(11-17) 
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where 
" ? / n f d(h/R) 

2 

so that 
At a      /z 

~^- = (~)      exp (-0.5sum/aa) (11-18) 

Combining Eqs.  (11-10),   (11-11),   and (II-18) gives 

_USl^U2     /a2 
(U6 - a6 ) -^i li- (^-)      exp (0.5 sum/a, 

a2      <-lSj     V  "6/ 

or,  in the terminology of Appendix III, 

l.   _  I  

where 
(U6-a6)y 

V   =  ( — )     exp (0.5 aum/aa) a2       LSl    V  a6/ 

if,    =    1 
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The symbols associated with the above lines represent 
the reciprocal of the slope of the lines. 

Fig. [1-1   Wave Diagram Illustrating Nomenclature Used in Calculation of Tube Length 
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APPENDIX   III 
COMPUTER PROGRAM 

The purpose of this program is to compute certain quantities of 
interest associated with the unsteady expansion problem among which 
are the 6 conditions,  the 2 conditions,  and a characteristic length. 

The method by which the above is accomplished basically reduces 
to solving two separate nonlinear equations by iterative schemes,  and 
evaluating certain integrals by Gaussian mechanical quadrature.    The 
gas properties are retrieved from magnetic tape using a double four- 
point interpolation. 

Program flow is as follows (Figs.  Ill-1 and 2,   and Tables III- 1, 
-2,   -3,   and -4): 

A. SR,   if not read in,   is computed from T6A and P6A,   T6A and 
PQA being computed as functions of altitude in subroutine ATP. 

B. The remaining 6A conditions are computed from SR and P6A. 

C. An iteration is performed to find p6.    The initial guess is 

Given a value of p6,   H6 is computed as a function of SR and 
p6 (table look-up).    The value of p6NEW is defined as 

p6NEff  «  - p6A   L6A -*«*- 
V'2(H06A-H6) A6 

If p6 and p6NEW differ by not more than 0. 01 percent,   then the 
iteration is said to have converged.    Otherwise,   the iterative 
value of p6 is taken to be the average of p6 and p6NEW,   and 
the process is continued. 

D. The remaining 6 conditions are computed from SR and H6 by 
interpolation in the tables. 

E. An iteration is performed to find H2.    The initial guess on H2 
is taken to be 10 

H2  = 0.6H1 (1  + 0.195X2) 

Developed empirically from the perfect gas results of Ref.  4, 
page 60. 
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where 

U6A X  = 0.32  -USA +     ÜM + i 
A6A 

/ A6A\ 0.26 

For known H2,   U2 can be computed by two relations.    The 
object of this iteration is to find the value of H such that 
these two values of U,   U21 and U22,  are equal.    The two 
relations that U must satisfy are 

1. p2   =  p2 (SR,H2) (from tape) (III-la) 

P2   =  P2(SR, H2) (from tape) (III-lb) 

B. 
2p2

R
(
T

HrH])^2-p2(^f)        <m-ic> 
C  - -P2p2TA/Tl (III-Id) 

pi  = 0.5(-B + \HP - 4C) (III-le) 

X 
USl = h>(H2  - 1U)/(l  -  ^J-M (III-If ) 

PI   = pi (Tl/TA) (III-lg) 

U21 = USl (1  - pl/p2) (III-lh) 

H2/R 

2 U22  = IJ6 - -^j-      f 6i,ti/*} (HI-2) 
rA1A       H6*?R a/aref 

Equations III-le through III-lh correspond to Eqs.  II-6 through 
II-9,   respectively.    Notice that all the quantities necessary to 
compute U21 and U22 are known for an assumed H2.    Newton's 
method with numerical first derivative is used to find the root of 

Hence 

where 

f(H2)   = U22  - U21   =  0 

MH2J H2i+1  = H2 

g(H2.)  = 

g(H2.) 

f (H2j) -  f(H2;-t) 
H2,  - H2,-! 

As this technique requires two initial guesses,  the second initial 
guess is taken to be 1. 1 times the first initial guess.    With the 
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indicated initial guesses and iteration method,  the root has 
converged in every case thus far.    The iteration is said to 
have converged whenever H2^ + ^ and H2^ differ by not more 
than 0. 01 percent. 

F. The remaining region 2 conditions are computed in terms of 
SR and H2. 

G. The characteristic length,  Ll,   is obtained as follows: 

USl -12 
iil   - 

a2     USl 

SUM = 
H2/R 

f d(H/R ) 

r    T            J 11   ia      HS/R 
(a/aref )2 

(III-3a) 

(III-3b) 

Y  =  M   (-^-Y1      exp(0.5SUM/aref) (III-3c) 

Ll  *   rn.1    iTTv (III-3d) I U 6 — a6 ) Y 

Input to the program is read from two different tapes. 

A. Tape J1N2 (J1N2 = 10) 

This tape contains the gas properties mentioned above. 
See Subroutine SLOW for the proper format. 

B. Tape JINI (J1N1 = 5) 

Two read statements are executed by this tape. 

1. A title card,  Format (72H. .. ) 

2. Input data,   Format (6E12. 0,   12) 

a. U6A   (ft/sec) 

b. Tl   (TO 
c. A6AA 

d. SR 
e. P6A   (aim) 
f. ALT  (ft) 

g. MORED 

All output from the program is on tape JOUT (JOUT = 6). 

A. The title card 

B. SR 

5 7 



A.EDC-TR-66-71 

C.    Inputs and other constants 

1.  Tl 
2.  HI 
3.   A6A/A6 

4.  RHOA 

5.   PA 
6.   R 
7.  SPEED REF 

D. Values of the following at the 6-A, 

1. P 
2. U 
3. T 

4. p 
5. H 

6. A 
7. Z 

6,  and 2 conditions 

E. Other output 

1. LI 
2. PI 
3. USl 

4. MSI 
5. DT 
6. L8/DTR (for unit L8) 

Subroutine INTRP 

The purpose of this routine is to do an N-point Lagrange inter- 
polation where N- 1 is a natural number.    The argument list is: 

(N, X, Y, XINT, YINT) 

N is the number of points 

X is the set of independent values 

Y is the set of dependent values 

XINT is the value of the independent variable at which 
the interpolation is to take place 

YINT is the interpolated value of the dependent variable 
(the return argument) 

X and Y should be appropriately dimensioned in the calling 
routine. 
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Subroutine GAUSS 

This subroutine defines constants b; and x- (i - 1,   16) such that 

can be approximated by 
16 

/ f(*)tk 

q - p 

.«."«(■■'^♦-H*) 

The values of b- and x- were taken from Ref.   17. 

The argument list for this subroutine is (b,   x).    Both b and x should 
be dimensioned sixteen in the calling program. 

Subroutine   SLOW 

The purpose of this subroutine is to do a cross four-point central 
Lagrange interpolation of data which have been stored on tape as a 
function of two independent variables.    The manner in which the input 
tape has been created should be equivalent to the following: 

DO1 1   K =  I, N 

1  WRITE  (IT)  X(K), J,  ((Y(K, I, L),  I = UNV), L  =  1, J) 

where    4 £ N 

2 £ NV < 9,  a constant defining the number of variables 
exclusive of X and J 

4 £ J  £ 150, a variable defining the number of points for a 
given K 

For a given value of K,   it is required that Y(K, I, L) be a strictly mono- 
tomic function of L for at least one I.    It is also required that X(K) is a 
strictly monotonic (increasing or decreasing) function of K. 

While X must always be one of the independent variables,   the second 
independent variable and the dependent variable need not be specified 
until call time.    Any Y that is a strictly monotonic function of K can be 
used as the second independent variable. 
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The meaning of the variables on the tape associated with this par- 
ticular problem is as follows: 

Fortran Name Identification 

X(K) SR 
J variable 
NV 9 
Y(K, 1, L) T 
Y(K,2, L) l°g 10 (p/pA) 
Y(K, 3, L) log10 (P/PA) 
Y(K, 4, L) loglO (H/R) 
Y(K, 5, L) ye 
Y(K, 6, L) a/aref 

Y(K, 7, L) Z 
Y(K, 8, L) H/RT 
Y(K, 9, L) Z* 

The data on this tape were taken from Refs.   6 and 7 primarily;  however, 
certain unpublished extrapolations of the above are also present. 

The argument list for the subroutine is 

(XX, Z, II, Jl, IT, NV, NERR) 

XX  is a specified value of SR 

Z  is a subscripted variable dimensioned appropriately 
in the calling routine 

II is a subscript indicating that Z{I1) is the second 
independent variable 

Jl is a subscript indicating that Z(J1) is the 
dependent variable 

IT indicates the channel and unit number on which the 
input gas tape is mounted 

NV indicates the number of variables on the tape corres- 
ponding to a value of XX {NV is nine in this case) 

NERR will be returned equal to one if and only if the 
interpolation failed for any reason. 

Subroutine  ATP 

This subroutine was not written specifically for this program,   and 
hence has options not used here.    Use is made of the subroutine in this 
program to find temperature and pressure as a function of altitude.   The 
data used by ATP were taken from Ref.   5. 
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Main 
Program 

Subroutine 
GAUSS 

Subroutine 
ATP 

Subroutine 
SLOW 

Subroutine 
INTRP 

Fig. Ill-l   Tree Diagram 
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c I } 

IT. sft-<yint; 

I 
\ Rtx I— \ Input I 

/ Pnnl \ 
/ Inpul \ 

10 
Comw« 

1m <£> 
1 

Con ill Dili 
1 

Fig. II1-2   Flow Chart of Main Program 
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TABLE  111 -1 

CROSS INDEX OF NOMENCLATURE 

As Used in Appendix   III As Listed in Report Nomenclature 

ALT 
SR S/R 
HO ho 
H06 hoe 

TA Ta 

yA Ya 
aref aa 

R R 

HI hi 
Tl Ti 

Pi PI 
PI Pi 
US1 Usi 

H2 h2 

T2 T2 

P2 P2 
P2 P2 

U2 u2 

H6 he 
T6 T6 

P6 P6 
P6 P6 
U6 u6 

T6A T6, 
P6A P6E 

U6A Ü6a 

P6A P6a 

A6A a6. 

63 



AEDC-TR-66-71 

TABLE   111-2 

SAMPLE INPUT 

Date Sei tl 

(A) Card 1 (Title card) 

(B) Card 2 

1.  U6A = 20000. 

2.   Tl = 296. 

3.   A6AA -  10. 

4. SR =  (Not required) 

5.   P6A =   (Not required) 

6.  ALT =  150,000. 

7.   MORED =   0 (indicates another set 

Data Sei t 2 

(A) Card 1 (Title card) 

(B) Card 2 

1.  U6A = 8020. 

2.  Tl -  296. 

3.  A6AA =  1. 

4.  SR = 26.62 

5.   P6A = .9 

6.   ALT =   (Not required) 

7.   MORED =  1 (indicates end of job) 
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TABLE   111-3 
SAMPLE OUTPUT 

S»'Hf INPUT SHOT ONE   UNSTEADY EXPANSION  I INPUT ALTITUOEI 

s/R-c.aoioaoBTE CJ 

INPUT 
ri HI 46A/.H6 RI-OA PA A SPEED   KEF 

0.29600OO0E   03     0.31997999E   07     0..09999999E   02      0.09999999E   01     0.09999999E   01     O.3O9170OOE   0*     0.I0873999E   0* 

6-A   CONDITIONS 
PUT RHO H A 1 

0.134289S7E-02     C.2OOO0OOOE  €S      0.26564383E   03     0.13S02770E-02      0.2865720 JE   07     O.10728073E   04     0.99999994E   00 

6-CONDITIQNS 
PUT «HO H A I 

0-3352!«64£-01     0.197IU8T7E   05     0.»J598062E   03     0.139S284SE-01     0.71794305E   07     0.166&88&1E   0*     0.9999999JE   00 

2-CQkpiriONS 

PUT BUD H * 2 
0.22414427E   02     0,73579l76E   0*     0.29314190E   04     0.20742384E   01      0.3920*56+E   OB-     C, 334448E6E   Of     O.10O64432E   01 

L1..7«o;9610E-Gl 

P1-.32025971E-O0 

US1-.B5804500E   04 

"Sl-.T5aoJ096E   01 

0T..73562634E-O3 

La/OTR-.215Q*901E Ofc 

SIMPLE INPUT SHOT TWO   UNSTEAOT EXPANSICN  I INPUT S/R.P/PA) 

5/R-0.2667OOC0E 02 

INPUT 
Tl «1 A6A/A6 RHO* PA R Sf-£EO   REF 

0.2960OOO0E   03     0.3L99T999E   07     0.09999999E   01     0.09999999E   01     O.09999999E  01     O.3O917OO0E  04     0.10KT3999E   04 

6-4   CONDITIONS 
PUT RHO H A Z 

0.90000QOOE   00     0.BO20O00OE   04     0.62182069E   03     0.39493404E-0O     C.679009UE   07     0.16260983?   D4     0.1ÖO031Z6E   OL 

6-C0NDITI0NS 
PUT RHO H * 7 

O.9OO0&46«   00     0.ROH9999E  0»     0.62184337E  03     0.39493404E-00     O.679O1570E   07     0.16Z61183E   04     0.1OOO3123E   01 

2-CONOITIONS 
PUT RHO H • 2 

0.14919058E   02     0.39505739E   04     0.1Z78831SE   04     O.31T28A04E   01     0.1«T95274E   08     0.23004521E   04     O.100437O6E   01 

L.1..'J44!H?58E   00 

PI>.47210a25E CO 

US1=.491042S4E 04 

HSl».*3379S25£ 01 

DT-.28T19155E-03 

L8/0TR».3153»5*2E   05 
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TABLE   111-4 
FORTRAN LISTING 

Sill    LOPEP   TBJ08 
SJOROPPMAP.LOGIC 
IIB-MAP UNITS 

FNTBY 
.UNIO. PIE 
UHlTia FILE 

FND 
tIBFTC MAINP 
C 

UNSTEADY EXPANSION 

.VJN10. 
UNIT10 
• Bill «REACT. INOUT ,P.LK = Z56,L0W,BIN 

C 
Cl 
C2 
C3 
c« 

ct 

ct 

cio 
c 

M-H.XB7 
FORTRAN «i UNSTEADY EXPANSION PROGRAK 
SU3ROUT!NES REQUIRED ARE GAUSS,ATP,SLCW.[NTRP 
DIMENSION H7 I»B1161.XI161 
COMMON IMFT 
CALL GAUSS 13.VI 
RHOA= 1. 
PA" 1. 
PAA = 14.69b 
R« 30«1.7 
6SPEni = 10B7.* 
GAMA = l.A 
TA = 273.15 
CP1= 108lf.l36 

TAPE ORDER FOR CONSTANT 5/R 
J .NUMBER i-F POINTS FOR THIS S/R 
r .TEMPERATURE 
ALOGIRHO/RHOAI 
ALOGIP/PAI 
ALCiGIH/R I 
GAME 
A/AA 
2 
H/ftT 
Z» 

•GAMMA   5U3   E 
A/fA    SUB   A    1 

I   STAR 

S FOSK»T(72H 
1 

16 FORWATI  4H0 S/R=-eiA.e//7HC! 
1 A6A/&6 

SPEED REF 

INPUT/11AH 
RHOA PA R 

/1H   7F16.6   //lTHO   6-A   CONDITIONS      /1K.H 
T RHO 

Z /1H   7E16.B/I 

HI 

2S FORMAT (15H0 6-CONDIT10NS  /114H P U 
1 T RHO H A 
2 Z /1H 7E16.8/ 1 

64 FORMAT (1SH0 J-COND1T10NS  /114H P U 
1        T RHO H A 
} I /1H 7E16.8/ I 

«I FORKATiSHO L1.S13.8/SHO P1*E13.B/6H0 USl'El 3.6/fcHO MS1 = E13.6 /inO  0 
lT=E)l.e/9Hn L8/DTR=E13.B I 

C      J1N]= INPUT DATA TAPE 
J1N1=5 

C     JIN2= INPUT GAS PROPERTY TAPE 
JIN2-10 

C      JOUT.: CUTPuT DAIA TAPE I THE ONLY ONE) 
JOUT=6 
NT1MF»! 

1 C0NT1MUF 
IMFT»0 

4 READ (JIN1.5) 
«RITE [JtlUT.5) 
RFAD (J]N1,2I UAA.Tl.A6AA.SR.P6A,ALT.MORED 

? FOR1ATtAF]2. C.I?I 
Hl= CP1»T1 
lc!ALTl?0O.10.?:o 

200 CALL ATP [ > .2.1.2.ALT.T6A.P6A.DliH,OUM) 
PAA-B6A/PAA 
SR = ?S.SB6 + J.I'ALUGITfcA/TAl-ALaGIPrjA/PAl 

10 NCRR>0 
ZM] =   ALOG101P6A/PA1 
CALL   SLOW   (5R.Z.3.1 .J1N?.<5.NERR 
IFINFRH-ltn .10:.! 1 

11 T6»=ZI 1 1 
CALL   SLOW   1SR.2.3.2.JIN2.0.NERR 

1?    RHOf.4«   RH0A«1G.««; !?1 
CALL   SLOW   ISR.Z,3,4>J|N?.OiNERn 

]i    H6A»    R«10.»«ZUl 
CALL   SLOV   (SR,2,3,6.JIN?.S.NERR 

1lt    4ftA =    ASPE>5«ZI6| 
CALL   SLOW   ISfi.Z .3.7»JIN2.«5.NFRR 

IS    ?«»t    Zl71 
HOA4s    4ftA*„5*U6a»U6A 
uSlT-    (JOUT.Ur Sft.TI .HI .A6AA.RHOA,PA.R.ASPErnPfcA.UtA.T6A, 

lPHOftA.H6A.tbA.Z6A 
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TABLE   111-4  (Continued) 

RHC6=3H06A«A6AA 
DO   18   r = l.'iOD 
212)=   «LOGIOIRHOft/RHCAl 
CALL   SLOW   <SR.Z,z.4.JrNZ.9.NERR   ) 
[F(NFR^-l)17.10Ci]7 

If   K6   =   R-»10.»»ZU) 
Tf^P^   SC=T<2,*(H06A-H6) I 
TFMP.      RH06A*U6A*A6AA/T£MP 
IFUMI [T^P-HH061 /TEMPI»100.-.01 J20.Z0.H 

18   RH06=.5«!RHO6+TEMP» 

if   PAUSE   11111 
00 T0  i oo 

20 CALL SLOh ISR .Z.4,1. Jl S2 . 9.NER9 1 
U6= RHf-M*U6A«ASAA/RHC6 
IF(N£RR-11?1,100.21 

21 16-ZI1I 
CALL SLOW [£R»Zi*.3..JIN2.9.NERR ) 

22 ps= PA»10.»*J(3| 
COLL SLOW ISR.Z.4,6.J[N?.9.\EflR ) 

21 A6 = ASPeD*-lI6) 
CALL SLCd I SR.Z.4,7iJIN2»9,.\ERR > 

2* Z6=ZI7] 
WRI7EIJ0UT.25J P6tUfti7 6.HH06.H6.A6.Z6 
GO 70 SO 
SLBR0U7INE 70 COMPUTE IN7EGRAL 

37 SLM=0. 
1 = £ 

28 r=i+i 

iltl.   .Mlrft !l»( XU-XL l-tXU + XLl 
Z.I4I•    ALDG10I2It I ] 
CALL   5LCW   ISRtZi«.6iJ[NS»9.NERR   ) 
IE    (HERR-! 129.100.29 

29 SL'«o    SUP   *"[!)/<        ZI6)»»XC3    > 
[FlI-16I2S.26.7« 

26   CONT[NLF 
SUV-   SU*f»l <U-XL)»,«»A$PED/<GAMA*7A) 
GO   TO    O^.76(.KG0 
THE   i-COND17I0NS 

*0   XX =      .3?«U6A/A6A     +(A6AA)*-».26-.l. 
H2! =   H;*M .^.19S»»X»XX)ii.6 
H2=h21 

00   50   J=1.TO0 

ZIAI- AL0G1ÜIH2/R) 
CALL SLCrf {SR.2t*i2«JIN2.9.iMERR I 

IFINFR3-mi.100.31 
ll   RH02=   ?HOA»]0.»»Z12) 

CALL   SLOV   (&R.2.4.».JIN2.<iiNERR   ) 
•»2   P2=   P»«10.««ZI31 

PB =   (2,»RH02«(HJ-H1 I / (B«T1 M-.RH02   -P2»TA/T1 
CC=   -P2»RHO?*TA/71 
RHO!=   .'j'l-BBtSriRT rEB»3B-4.»CC I ) 
USl=   S<7RTI?.*(H>-H2I/<1 .-RH01« = H0. /I RHCJ'^HD?) > I 
P! = R|-3]«T1/TA 
L22=   US1»Il.-RHO]/RH02l 
XU =    HZ/? 
XL=   H6/R 
KSC=J 
CO   TO   27 

?5   U2!=   Uft—SI M 
!r ij-1 )iO-.'6«C 

'6   FXI-   U21-U22 
H?2=   1,]»H21 
GO   TO   40 

40   FX2 =   U21-U?2 
RAIIO^I     .-H21/H2Z1 / I l.-EXl/F»!2 ! 
H?3"=   H2?»lÜ.-RA71C1 
[FttoSI(-l2»-h-??)/H231*10D.-.01)6D.60.45 

45   FX1=FX2 
H21-H22 
H22=H2"' 

4 9 H2= HZ? 
«0   CCNTIN'JF 

PAUS*   ??22? 
so TO ios 

6C   2U]i   ALOCilOtHZ'/R] 
CALL   SLQ'*   ISR.Z.4.1 .JIN2.9.NERR   1 
IFOIERR-1I61.10C.6] 

61   T?»ZI 1| 
CALL   SLOW   rSR.Z.«.6»-II.,)Z.9.r( = Rl   I 

£?   A2=AScr5tZl4> 
CALL   'vLOW   li».Z id .7.J1N2.9.NERR   I 

61   Z2=Z(7) 
U?=U?1 
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TABLE   III-4   (Continued) 

WR]7*<JCuT,64l P2U2.T2,HHO?,H2.A2,Z2 
C     CHARACTERISTIC LENGTH 

70 DFL!. (USl-WI/l A2>US11 
r« DFLT 
»U= H?/R 
XL= H6/R 
KGO*? 
GO TO 27 

16 y = Y«S0RT<A?,'A6)*EXP<.5*SLIH/ASPE[>> 
XL 1 = 1 ./ I <J6-A6)»Y) 
X"S] = u5)»£'iRTlTA/T] I /»SPED 
:<L£1T= U<-»(U6-A6>/A' 
H^lTF I J0UT.91 IX LI »PI >'JS1 .Xfi: .Y.XL6DT 

]0O rONT!NUr 

IFIPORFDI101.44101 
1111 PCTURN 

EUD 
5IBFTC ATP     V94.XR7 
C      SUBROUTINE ATP - ALTITUDE TEMP AN3 PRESS  I 010 5JVRAM5AY1 

SL3101 TIME »TP<TTTST.jTFST,|cirEST.LTEST.A>TA,PA,DA,CSA] 
DIMENSION HB^|.TKB<221iELM<22).PBI22l ,FMB!22I 
riATA<HP<l).[='l,22>/0..]1000. ,20000.,3200P. . 4 T!0C . . 520 OC . .6 1D0O. . 
1790C0.,88743..96451..108129.,117776,,146541.,156071.,165571.. 
2]B44e5..22196 7.,286476.,376312..4 63 526.,54 8210..£3o530.,' 
OATA<TMPIli.t=l.22l/2Sa.l5.21i.65,21&.*5.228.65.270.65.2 70.65. 
1252.65,1 BO,65.180.65.210.65,260.65.360.65,960.65,!110,65.1210.65. 
2 1350. 65. I 550. 65. 1830. 65. 2 160,65, 2420. 65, 2 59^. 65, 2750. 65/ 
DATA(':Lf'(H.I = ).22l/-.0065.0...0Cl,.r>n28,0..-.nr'2i-.OO4,r.i 
1.CC309023..00516636,-U1036592..020 6566 8..01573977,.0105 2632i 
2.0OT4 0192,,O05335B9,.OO43404B,.00367 33 6..0029«I 17..00200699. 
3.00 I 33657..00133657/ 
1A lAIPP(t), 1-1.22)/lv!3. 25, 225. 32, 5"-. 7487, 8 .5901411.10905. .59 0005. 

l.]82'-99..ClC3 7 77,1.6438E-03.3.0O75E-n4>7.3J44F-o5,2.5217E-o5, 
2S.F617F-06.3.t943E-C6,2.792 6E-06.1.6852E-06.6.96';4E-07,1.8a38E-n7. 
34,03 0tE-f,B.l,0957E-oa.3.4502EC9,1.19ieE-09/ 
OATAIFM31 I I , 1 = 1,22 1/28.9644.28.9644 , 28 .9644 , 2 8 . 9644 , ?B , 964 4 , 
12 8.9644,26.9 64 4,2 8.9644,26.9644,28,8 8,28.56.2 8.07,26.92.26.66. 
226.4,25.55.24.7,22.66,19.94,17.94,16.84,16.17/ 
FAC1 = L.72129 
FAC? = 0.47B8-2 
«AC" = 1545.31 

01O55 

JIB 
219 

250 
72 1 

ic-c 

ini 
I 02 

?•■ ] 
232 

FAC5 » 27Ü.55S 
AR = P314.32 
G = 9.e066^ 
TWO = 2«,9644 
RF = 6'"'67^6.C 
tFIITESTl2l7.21S.217 
oi=PA«FAC? 
IFlHTFST-i 1218.218.219 
P1«P1»14*. 
IC 270 1=2.22 
IFIPSiI 1-P1I722.J21.220 
CFiNT]NUF 
H = H8I!I 
CO TO 7?3 
IF(FLMIl-l)1235.236.235 
Ha HP, I ]-! I.ITMBf l-ll/ELfll'l >)*■ lPl/P«H 1-1»1**M -AR'ELKI |-1 I 1/ 
1lG'Fh"0>1-1.1 
C-0 rr. 223 
PfAC = P]/P»11-1) 
H»wpi(-i>-[AR»THB(|-]l»4LOCIPFACII/IG'FHO) 
2 = i RF«H)/IRE-HI 
A=I/.304fl 
GO TO 212 
2=A*.3n43 
H=:R£*2(/IRE-:I 
00 !C0 J=?,27 , 
IFCH-H9I JUIOI.IC'2 . 1 3L 

CONTINUE 
J = J-1 
T«=T*°.< Jl+FLMIJ)»(H-HB(J1 > 
IF«J-72)7?1.2T0.23C 

r.o  'o  2-"2 
Ffc,.= EM5IJl-(FMB!J)-FMeiJ-H ll»! I H-HB I J I 1/CH9' J*\ 1-M6UI 1 1 
TA = ( F^/E^O^TA 
CSA.FACl'SQRT    (AR'TAI 
TF IFLI'IJ] »303 . 1'14,1C3 
P = = <UJ)«IT,».31J)/<TMPtJI.ELM(JI«lH-H>l<.MlH'",r<G»>:M0h/ L^'^Lf* ( J > ) | 
GO    "O    K5 
P = PRU)*FXP    II -(Ci»F«L. j*r H-Ha I   ' .R'THBUl |] 
R"   TO   I10S.1C7I.JTEM 
Tl=l,f»TA 
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TABLE   111-4  (Continued) 

107   ]F< tT£STI?10.2K.21S 
21S   GC   TO   (136«1091.K.TE5T 
iCe   PA=P».C14503746 

6C   TO   210 
!T9   PA-=P»2.0885438 
210   TflJTEST-I    J2]l,211-21? 
711   FAC35-FAC3 

CO   TO   213 
?]2   FAC3S = FAC< 
P\-K na = (FM /p»r3^)»(P»2.u8e,i'.3fl/TAi 

C-0   TO   l lin,Jli,i1Hl .LTEST 
311   FAC2-0. 

AR = 0. 
r-=o. 
^C=0. 
RF-:. 
FACUO. 
FAC3*0. 
F4C5=0. 

21«.   DA=DA/32.17404» 
I '0    RETURN 

Fr") 
SIBCTC SLCfV    M94.XR7 

SU?ROUT!NF SLOW IXX.Z.I1.J] .IT.W.NERR ) 
C     1At=f [5 WRITTEN WITH LINES OF CCMTA.ST XX 
C     ZMII AND «X ARE INDEPENDENT VARIABLES 
r zui) is THE DEPENOENT VARIABLE 

C     AK = *i. IF XX INCREASES WONOTON KALL Y ON TAPE 
C     AK* -li IF XX DECREASES MCNCTCMCALLY ON TAPE 
C     JT = TAPF UNIT 
C NV*   NO,   OF   VARIABLES   <*to   TAPE   C0R   EACH  XX   . INOT   GREATgR   THAN   9) 
C NO.    OF   POINTS    FO«!    EACH   XX    NOT   GREATER   T HA.«.    IS*1 

C PF'-I«.   EXECUTION 
fU^F/HStC.   Xl4I.Y(4.<J.]"in).ZI9>.lllM.lM4>,Wt4|>NPf<.l 
CO"I*ON   ]«fTI}lll 
IF I IMFTI1 I )    7.1.7 

1   1ACX   SPACF   IT 
RFAD)IT)   BUM 
RFWIND   IT 
00   2   K = l.3 
RcAOflTl   XKl.J.f lYHK.I.LI. r-l.N'/l.L=].J   | 

2   NPIKI=- 
XW«Xl?)-X(lI 
AS"   ABS(XW)/X¥ 
t>IRl=l. 
I«FT(1).I 
xxx=xx 
NERP=C 
;c=3 
GC   70   70 

7   NF5R=0 
EXCEPT   FOR   FIRST   TIME   THROUGH 
IFl(XX-XIHlH*tXX-XlM2|)H00»10O»lCl 

TO   T«"MP=IXX-XXXl »AK 
0IR2-    ABS< TEHP|/TEM*> 
GO»   0IR!»DIR2 
XXX'XX 
OlRl= »[R2 
lFinjR?)22.8.50 

NEGATIVE   DIRECTION 
20   IF100I 32ia,40 
30   flACK   SPACE   IT 

PACK   SPACE   [T 
BAC<   SPACE   IT 
GO   TO   «t02 

«0   :r> = IM-i 
[FIIM      140]r4O:.402 

401    !M = «. 
4-2   IU.JIA+1 

BACK   SPACE   IT 
BACK   SPACE   IT 
IFIMl-41404.404,403 

403 Ml=l 
404 M2=M1+: 

IF(r2-4I406.4t6.405 
405 M2-1 
406 READ<]T|   XiIM).J.1(VItH.I.L)»I=1>NV1.La]>J   I 

N"lIMI-J 
IF(<XX-XIM1)I'(XX-X(«12MHOO.]00.42 

42 IFIXIM1]-xtM2l140.43140 
FRROR.   VARIABLE   OFF   FROMT   ENO   OF   TAPE 

43 CDNTtN-JF 
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TABLE llt-4   (Continued) 

NERR-1 
GO TO 200 

C 
C     POSITIVE DIRECTION 

SO IF<GO)60.8.70 
«0 READ I IT) OUH 

ftEAOini DUM 
READIIT! DUM 
GO TO 70? 

70 If=|M*l 
. IF! IM-4)702.''0?.70l 

701 IH=] 
702 Ml =IM-1 

IFIH1J7C3.703.7C4 
703 Ml"* 
7D4 M2=M1-1 

IFIM2I705.705.704 
705 M2=4 
706 READIIT)   X( tN| , J,( IYUH. I »L 1 . I «1 .MV) ,L«1. J   I 

NPI[M)=J 
IF I (XX-XIM1 I )»IXX-X(M?M I lfC.irO.70 

C 
C     TAPE SEARCH COMPLETE . 00 CROSS FOUR POINT 

ICO DO 150 K«l>4 
NPK=NPIK1-1 
DO 11* I.l.NPK 
IFt<Y(K.]l.I)-ZlllM*IYI[C.[l»t*ll-Z<ll)lll25.125.115 

115 CDMTlNUf 
NE9R»1 
50 TO 20C 

125 IF!r-!1127.126.127 
126 J=0 

GD TO 137 
127 IFII-NPK1136.135.13» 
135 J=NPK-3 

GO TO 137 
13* J-1-? 
137 DO 14C L-1.4 

MX=L+J 
UtLl» Y1K.I1.MX1 

140 VIL I • YIXiJl iKX) 

150 CALL IHTRP 14.U.V.21ll).w(Kl) 
CALL INTRP I4.X.W.XX.2IJ1I) 

175 RETURN 
* CONTINUE 

20; NFRP=1 
1F(IMETI2I1215.201.215 

201 ]MET(21=1 
DO 210 IM=1.4 
WRITE!».2021X1]M1 

202 F0RMAT(]H1E)6.B> 
203 FORMATriH 7E16.81 

NXXXX^NPIIM) 
210   KRITEIS-.20JH IYI 1H, I .Ll,I-1 ,HVI .L-l »NXXXIO 
215   RETURN 

END 
JIP*TC   CAUSS        H94.XR7 

SUP-ROUTINF   GAUSS   O.X1 
C GAUSS   CONTAINS   EIGHT   PLACE.SIXTEEN   POINT   INTEGRATION   CONSTANTS 

D EVENS I ON  P.I 161.XU6J 
XUI-.095M2510 
X(?>».26160355 
X13I».45601678 
X!«!=.517*7624 
XI 51 ■=. 755«0441 
XI6 I=.8 6563120 
XI71=.94457502 
Xiei=.9B940013 
f! t 1>=.18945061 
Sl?l=.)«260342 
BI'I».16915652 
Rt4>=.!49*9'>99 
SI5I-.12462697 
HI6)=.09515851? 
BI7>=.062253524 
BI8I-.02715245= 
Of   12345   1=9.16 
J=17-I 
XI Il»-XIJl 

123»«*   PI 11=   OUI 
OETI.R" 
END 

<!E)FTC    INTRP "94.XR7 
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TABLE   111-4   (Concluded) 

«jUBRffllTINF    INTtiP    IN.X.V.XlNT.YfNT    )  
nTiFI-iSTON   X<] 1 ,YI 1 1  

 .YiWT=0^_ 
DC 2:2 [=i.n 

 SUM»! 

IZl 4r J J_ 2 o o ._2JJ 1.2 o o_ 
   200   SUMNaimn»ll<tNT-X(J) I 
 smn.si..*m»ni n-x<"jii 
 aoi,,CCHIIHl 

RSTU=W  
_£N2 
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